Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging
نویسندگان
چکیده
BACKGROUND Near-infrared quantum dots (NIR QDs) are a new class of fluorescent labels with excellent bioimaging features, such as high fluorescence intensity, good fluorescence stability, sufficient electron density, and strong tissue-penetrating ability. For all such features, NIR QDs have great potential for early cancer diagnosis, in vivo tumor imaging and high resolution electron microscopy studies on cancer cells. RESULTS In the present study we constructed NIR QDs functionalized with the NT4 cancer-selective tetrabranched peptides (NT4-QDs). We observed specific uptake of NT4-QDs in human cancer cells in in vitro experiments and a much higher selective accumulation and retention of targeted QDs at the tumor site, compared to not targeted QDs, in a colon cancer mouse model. CONCLUSIONS NIR QDs labelled with the tetrabranched NT4 peptide have very promising performance for selective addressing of tumor cells in vitro and in vivo, proving rising features of NT4-QDs as theranostics.
منابع مشابه
Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission
Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...
متن کاملPeptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects.
We report the in vivo targeting and imaging of tumor vasculature using arginine-glycine-aspartic acid (RGD) peptide-labeled quantum dots (QDs). Athymic nude mice bearing subcutaneous U87MG human glioblastoma tumors were administered QD705-RGD intravenously. The tumor fluorescence intensity reached maximum at 6 h postinjection with good contrast. The results reported here open up new perspective...
متن کاملIn Vivo Cancer Targeting and Imaging-Guided Surgery with Near Infrared-Emitting Quantum Dot Bioconjugates
Early detection and subsequent complete surgical resection are among the most efficient methods for treating cancer. However, low detection sensitivity and incomplete tumor resection are two challenging issues. Nanoparticle-based imaging-guided surgery has proven promising for cancer-targeted imaging and subsequent debulking surgery. Particularly, the use of near infrared (NIR) fluorescent prob...
متن کاملIn Vivo Study of the Effects of Peptide-Conjugated Near-Infrared Fluorescent Quantum Dots on the Tumorigenic and Lymphatic Metastatic Capacities of Squamous Cell Carcinoma Cell Line Tca8113 and U14
Quantum dots (QDs) have great potential in non-invasive monitoring and imaging of tumor cells in vivo, but it is unknown if QDs affect their tumorigenesis and metastasis. Here, we applied peptide-conjugated near-infrared fluorescent QDs (NIRF-QDs) to label the squamous cell carcinoma cells Tca8113 and U14. We tested the proliferation and apoptotic capacities of both cells, and the capacity of c...
متن کاملWater-soluble Ag(2)S quantum dots for near-infrared fluorescence imaging in vivo.
A one-step method for synthesizing water-soluble Ag(2)S quantum dots terminated with carboxylic acid group has been reported. The crystal structure and surface of the prepared Ag(2)S quantum dots were characterized. The prepared Ag(2)S quantum dots exhibited bright photoluminescence and excellent photostabilities. The photoluminescence emissions could be tuned from visible region to near-infrar...
متن کامل